9th Grade American Online School COMPUTER SCIENCE CURRICULUM Creating, Organizing, and Understanding the Digital World Through Code, Data, and Critical Thinking

Version Apr/2025

1. Introduction

The Role of Computer Science Education in 9th Grade

The 9th Grade Computer Science curriculum introduces students to the fundamental principles of computational thinking, digital literacy, and creative problem-solving with code. Students build technical fluency in programming, web development, and data structures, while developing an ethical understanding of media, privacy, and technology's role in society. Through hands-on exploration, students will create original digital projects and prepare for advanced studies in technology and digital innovation.

By the end of this course, students will:

- ✓ Understand core computing systems including hardware, software, and cybersecurity.
- ✓ Develop foundational programming skills using languages such as Python or JavaScript.
- ✓ Analyze the credibility of digital media and evaluate ethical uses of technology.
- ✓ Build creative and functional web-based and coded projects.
- ✓ Collaborate and communicate effectively in digital development environments.

© 2025 American Online School. American Online School. All rights reserved. For the latest version, see the version date in this document. For more information, visit **www.onlinehomeschooling.us** or email **info@onlinehomeschooling.us**.

2. Core Competence Areas

CS.1 Digital Literacy and Critical Media Analysis

Learning Outcomes

By the end of this course, students will be able to:

- ✓ Evaluate the credibility and bias of online content.
- ✓ Understand how algorithms influence digital media exposure.
- ✓ Demonstrate ethical and responsible online behavior.

Competencies

CS.1.A.1 – Evaluating Digital Content.

• Distinguish credible sources from misinformation using fact-checking tools and source analysis.

CS.1.A.2 – Understanding Algorithmic Influence.

• Analyze how platforms recommend content and shape user experience.

CS.1.A.3 – Practicing Digital Responsibility.

• Model appropriate, safe, and respectful digital interactions and behaviors.

CS.2 Computer Systems and Technology Fundamentals

Learning Outcomes

By the end of this unit, students will be able to:

- ✓ Describe the basic architecture and function of computer systems.
- ✓ Explain data storage, transmission, and protection.
- ✓ Apply basic cybersecurity practices to protect digital information.

Competencies

CS.2.A.1 – Understanding Computer Components.

• Identify the roles of hardware (CPU, RAM, storage) and software (OS, applications).

CS.2.A.2 – Explaining Data Representation.

• Understand how binary systems, file formats, and compression are used to store and transmit information.

CS.2.A.3 – Practicing Cybersecurity.

• Describe encryption, strong passwords, and safe data handling practices.

CS.3 Programming Fundamentals

Learning Outcomes

By the end of this unit, students will be able to:

- ✓ Write and debug simple programs using loops, conditionals, and functions.
- ✓ Use programming to solve real-world problems and create interactive content.
- ✓ Understand how to organize and reuse code using functions and parameters.

Competencies

CS.3.A.1 – Writing Basic Programs.

• Create programs that utilize variables, loops, conditionals, and user input.

CS.3.A.2 – Debugging Code.

Identify and fix logical and syntactical errors in code.

CS.3.A.3 – Using Functions.

• Define and call reusable functions to improve code efficiency.

CS.3.A.4 – Creating Console-Based Applications.

• Build simple interactive applications such as text-based games and quizzes.

^{© 2025} American Online School. American Online School. All rights reserved. For the latest version, see the version date in this document. For more information, visit **www.onlinehomeschooling.us** or email **info@onlinehomeschooling.us**.

CS.4 Algorithms and Problem Solving

Learning Outcomes

By the end of this unit, students will be able to:

- ✓ Design logical, step-by-step solutions to programming problems.
- ✓ Represent algorithms using flowcharts or pseudocode.
- ✓ Implement algorithms in working code.

Competencies

CS.4.A.1 – Designing Algorithms.

• Develop and document algorithms to guide program behavior.

CS.4.A.2 – Implementing Algorithms.

• Translate algorithmic logic into functioning code.

CS.4.A.3 – Applying Computational Thinking.

• Break down problems, identify patterns, and build reusable solutions.

CS.5 Data Structures and Organization

Learning Outcomes

By the end of this unit, students will be able to:

- ✓ Store and manage data using arrays, lists, and dictionaries.
- ✓ Work with real-world data sets in digital projects.
- ✓ Perform simple file input and output operations.

Competencies

CS.5.A.1 – Using Data Structures.

• Create and manipulate structured data using lists and key-value pairs.

CS.5.A.2 – Applying Real-World Data.

• Use data such as locations, prices, or demographics in programs.

CS.5.A.3 – Reading Files.

• Open and read data from .txt or .csv files using code.

CS.6 Web Development and Creative Coding

Learning Outcomes

By the end of this unit, students will be able to:

- ✓ Create web pages using HTML and CSS.
- ✓ Add interactivity with JavaScript.
- ✓ Apply principles of accessibility and design to websites.

Competencies

CS.6.A.1 – Structuring Web Content.

Build functional web pages using HTML tags and formatting.

CS.6.A.2 – Styling Web Pages.

• Use CSS to style and layout page elements.

CS.6.A.3 – Adding Interactivity.

• Implement simple JavaScript functions for user interaction.

CS.6.A.4 – Designing Accessible Interfaces.

• Apply user-centered design and accessibility standards.

CS.7 Ethics, Privacy, and Technology in Society

Learning Outcomes

By the end of this unit, students will be able to:

- ✓ Explain ethical and societal implications of digital technologies.
- ✓ Discuss privacy issues and data collection practices.
- ✓ Reflect on the role of AI and automation in future societies.

Competencies

CS.7.A.1 – Understanding Data Ethics.

• Describe data surveillance, targeted advertising, and digital rights.

CS.7.A.2 – Analyzing Technology's Social Impact.

• Explore topics such as automation, algorithmic bias, and tech inequality.

CS.7.A.3 – Evaluating AI and Emerging Tech.

• Discuss the promise and challenges of artificial intelligence and robotics.

3. Assessment and Evaluation

Formative Assessments – Checking Progress Through Interactive Learning

- ✓ Daily coding exercises and media analysis discussions.
- ✓ Flowcharts, pseudocode, and idea logs for planning.
- ✓ Peer feedback on early-stage programming.

Summative Assessments – Final Projects and Exams

- ✓ Cumulative unit tests on programming, systems, and ethics.
- ✓ Completed website and interactive coding projects.
- \checkmark Analytical tasks on digital media and data ethics.

Authentic Assessment – Real-World Applications

- ✓ Final capstone project with documentation and public presentation.
- ✓ Ethical debate or tech impact reflection.
- ✓ Peer-reviewed digital portfolios and group collaboration reports.

4. Instructional Strategies for Online Learning

Inquiry-Based and Thematic Learning

- ✓ Analyze real-world challenges such as fake news detection or geolocation apps.
- ✓ Investigate ethical dilemmas and computing innovations.

Project-Based Learning (PBL)

- ✓ Develop digital products solving practical problems.
- \checkmark Use design thinking and agile development cycles.

Technology-Integrated Learning

✓ Utilize online IDEs (Replit, VS Code), design platforms (Figma, Canva), and browser-based tools.

✓ Implement coding journals, debugging logs, and AI-based assistants.

HONCA/